كلية الحاسبات والذكاء الإصطناعي

Probability and Statistics

Lecture 05

Dr. Ahmed Hagag

Faculty of Computers and Artificial Intelligence Benha University

Spring 2023

Announcement

كلية الحاسبات والذكاء الإصطناعي

$$
\begin{gathered}
\text { Quiz (1) } \\
\text { In Lecture } 6 \\
22 / 3 / 2023
\end{gathered}
$$

Covers: Lec 1, 2, 3, and 4

Chapter 2: Random Variable

- Discrete Random Variables.
- Probability Mass Functions.
- Cumulative Distribution Functions.
- Discrete R.V. (Mean and Variance).
- Continuous Random Variables.
- Probability Density Functions.
- Continuous R.V. (Mean and Variance).
- Joint Probability Distributions.

Continuous R. V. (1/3)

Continuous Random Variable:

If the range space R_{X} of the random variable X is an interval or a collection of intervals, X is called a continuous random variable.

A continuous random variable has a probability of $\mathbf{0}$ of assuming exactly any of its values. Consequently, its probability distribution cannot be given in tabular form.

Continuous R. V. (2/3)

Example:

If we talk about the probability of selecting a person who is at least 163 centimeters but not more than 165 centimeters tall. Now we are dealing with an interval rather than a point value of our random variable.

Continuous R. V. (3/3)

If X is a continuous random variable, for any x_{1} and x_{2},

$$
P\left(x_{1} \leq X \leq x_{2}\right)=P\left(x_{1}<X \leq x_{2}\right)=P\left(x_{1} \leq X<x_{2}\right)=P\left(x_{1}<X<x_{2}\right)
$$

Prob. Density Functions (1/6)

Probability Density Function

For a continuous random variable X, a probability density function is a function such that
(1) $f(x) \geq 0$
(2) $\int_{-\infty}^{\infty} f(x) d x=1$
(3) $P(a \leq X \leq b)=\int_{a}^{b} f(x) d x=$ area under $f(x)$ from a to b for any a and b

Prob. Density Functions (2/6)

Definite Integral:

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

$$
\begin{aligned}
& \int_{1}^{3} x^{2} d x \\
& \int_{1}^{3} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{1}^{3}=\left[\frac{3^{3}}{3}\right]-\left[\frac{1^{3}}{3}\right]=\left[9-\left(\frac{1}{3}\right)\right]=\frac{26}{3}
\end{aligned}
$$

Prob. Density Functions (3/6)

Example1:

Suppose that $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{e}^{-\boldsymbol{x}}$ for $\boldsymbol{x}>0$
Check the probability density function, then determine the following probabilities:

1. $P(X<1)$
2. $P(1 \leq X<2.5)$
3. $P(X=3)$
4. $P(X \geq 3)$

Prob. Density Functions (4/6)

Example1 - Answer (1/5)

Check the probability density function:
$\int_{0}^{\infty} e^{-x} d x$

$$
\int_{0}^{\infty} e^{-x} d x=-\left.e^{-x}\right|_{0} ^{\infty}=\left(-e^{-\infty}\right)-\left(-e^{0}\right)=0+1=1
$$

Prob. Density Functions (4/6)

كلية الحاسبات والذكاء الإصطناعي

Example1 - Answer (2/5)

1) $P(X<1)$

$$
\begin{aligned}
P(X<1)=\int_{0}^{1} e^{-x} d x & =-\left.e^{-x}\right|_{0} ^{1}=\left(-e^{-1}\right)-\left(-e^{0}\right) \\
& =-0.367879+1=0.632121
\end{aligned}
$$

Prob. Density Functions (4/6)

Example1 - Answer (3/5)

2) $\boldsymbol{P}(\mathbf{1} \leq X<2.5)$

$$
\begin{aligned}
& P(1 \leq X<2.5)=\int_{1}^{2.5} e^{-x} d x=-e^{-x} \left\lvert\, \begin{array}{c}
2.5 \\
1
\end{array}\right. \\
& =\left(-e^{-2.5}\right)-\left(-e^{-1}\right)=-0.082085+0.367879 \\
& =0.285794
\end{aligned}
$$

Prob. Density Functions (4/6)

كلية الحاسبات والذكاء الإصطناعي

Example1 - Answer (4/5)

3) $P(X=3)$

$$
\boldsymbol{P}(\boldsymbol{X}=3)=\mathbf{0}
$$

Prob. Density Functions (4/6)

كلية الحاسبات والذكاء الإصطناعي

Example1 - Answer (5/5)

4) $\boldsymbol{P}(\boldsymbol{X} \geq 3)$

$$
\begin{aligned}
P(X \geq 3) & =\int_{3}^{\infty} e^{-x} d x=-\left.e^{-x}\right|_{3} ^{\infty}=\left(-e^{-\infty}\right)-\left(-e^{-3}\right) \\
& =0+0.049787=0.049787
\end{aligned}
$$

Prob. Density Functions (5/6)

Example2:

Suppose that the error in the reaction temperature, in ${ }^{\circ} \mathrm{C}$ (Celsius), for a controlled laboratory experiment is a continuous random variable X having the probability density function

$$
f(x)= \begin{cases}\frac{x^{2}}{3}, & -1<x<2 \\ 0, & \text { elsewhere }\end{cases}
$$

(a) Verify that $f(x)$ is a density function.
(b) Find $P(0<X \leq 1)$.

Prob. Density Functions (6/6)

Example2 - Answer (1/2)

Check the probability density function:

$$
\int_{-1}^{2} \frac{x^{2}}{3} d \boldsymbol{x}
$$

$$
\int_{-1}^{2} \frac{x^{2}}{3} d x=\left.\frac{x^{3}}{9}\right|_{-1} ^{2}=\left(\frac{(2)^{3}}{9}\right)-\left(\frac{(-1)^{3}}{9}\right)=\frac{8}{9}+\frac{1}{9}=\mathbf{1}
$$

Prob. Density Functions (6/6)

كلية الحاسبات والذكاء الإصطناعي

Example2 - Answer (2/2)

2) $\boldsymbol{P}(\mathbf{0}<\boldsymbol{X} \leq \mathbf{1})$
$\boldsymbol{P}(\mathbf{0}<\boldsymbol{X} \leq \mathbf{1})=\int_{0}^{1} \frac{x^{2}}{3} \boldsymbol{d} \boldsymbol{x}=\left.\frac{x^{3}}{9}\right|_{0} ^{1}$

$$
=\left(\frac{(1)^{3}}{9}\right)-\left(\frac{(0)^{3}}{9}\right)=\frac{1}{9}+\frac{0}{9}=\frac{\mathbf{1}}{\mathbf{9}}
$$

Cumulative Distribution Fun. (1/4)

Cumulative Distribution Function

The cumulative distribution function of a continuous random variable X is

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(u) d u
$$

for $-\infty<x<\infty$.

Probability Density Function from the Cumulative Distribution Function Given $F(x)$,

$$
f(x)=\frac{d F(x)}{d x}
$$

as long as the derivative exists.

Cumulative Distribution Fun. (2/4)

Cumulative Distribution Function

The cumulative distribution function of a continuous random variable X is

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(u) d u
$$

for $-\infty<x<\infty$.
$P(a<X<b)=F(b)-F(a)$ and $f(x)=\frac{d F(x)}{d x}$,
if the derivative exists.

Cumulative Distribution Fun. (3/4)

Example1:

Find the cumulative distribution function $F(x)$ and use it to evaluate $P(0<X \leq 1)$.
$f(x)= \begin{cases}\frac{x^{2}}{3}, & -1<x<2, \\ 0, & \text { elsewhere } .\end{cases}$

Cumulative Distribution Fun. (4/4)

Example1 - Answer (1/3)

Find the cumulative distribution function $F(x)$

$$
F(x)=\int_{-\infty}^{x} \frac{u^{2}}{3} \boldsymbol{d} \boldsymbol{u}
$$

$$
\frac{x^{2}}{3}, \quad-1<x<2,
$$

Cumulative Distribution Fun. (4/4)

Example1 - Answer (1/3)

Find the cumulative distribution function $F(x)$

$$
F(x)=\int_{-\infty}^{x} \frac{u^{2}}{3} \boldsymbol{d} \boldsymbol{u}=\int_{-1}^{x} \frac{u^{2}}{3} \boldsymbol{d} \boldsymbol{u}
$$

Cumulative Distribution Fun. (4/4)

كلية الحاسبات والذكاء الإصطناعي

Example1 - Answer (2/3)

Find the cumulative distribution function $F(x)$

$$
\begin{aligned}
F(x)=\int_{-\infty}^{x} \frac{u^{2}}{3} \boldsymbol{d} \boldsymbol{u}=\int_{-1}^{x} \frac{u^{2}}{3} \boldsymbol{d} \boldsymbol{u}=\left.\frac{u^{3}}{9}\right|_{-1} ^{x} & =\left(\frac{(x)^{3}}{9}\right)-\left(\frac{(-1)^{3}}{9}\right) \\
& =\frac{x^{3}}{9}+\frac{1}{9}=\frac{x^{3}+1}{9}
\end{aligned}
$$

Cumulative Distribution Fun. (4/4)

Example1 - Answer (2/3)

Find the cumulative distribution function $F(x)$

$$
F(x)= \begin{cases}0, & x<-1 \\ \frac{x^{3}+1}{9}, & -1 \leq x<2 \\ 1, & x \geq 2\end{cases}
$$

Cumulative Distribution Fun. (4/4)

Example1 - Answer (2/3)

Find the cumulative distribution function $F(x)$

Cumulative Distribution Fun. (4/4)

كلية الحاسبات والذكاء الإصطناعي

Example1 - Answer (3/3)

Find the cumulative distribution function $F(x)$ and use it to evaluate $P(0<X \leq 1)$.

$$
F(x)=\frac{x^{3}+1}{9}
$$

$P(0<X \leq 1)=F(1)-F(0)=\frac{2}{9}-\frac{1}{9}=\frac{1}{9}$

Mean and Variance (1/3)

Mean and Variance

Suppose that X is a continuous random variable with probability density function $f(x)$. mean or expected value of X, denoted as μ or $E(X)$, is

$$
\mu=E(X)=\int_{-\infty}^{\infty} x f(x) d x
$$

The variance of X, denoted as $V(X)$ or σ^{2}, is

$$
\sigma^{2}=V(X)=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x=\int_{-\infty}^{\infty} x^{2} f(x) d x-\mu^{2}
$$

The standard deviation of X is $\sigma=\sqrt{\sigma^{2}}$.

Mean and Variance (2/3)

Example1:

Find the expected value of $X, E(X)$ and the variance $V(X)$.
$f(x)= \begin{cases}\frac{x^{2}}{3}, & -1<x<2, \\ 0, & \text { elsewhere }\end{cases}$

Mean and Variance (3/3)

Example1 - Answer (1/3)

Find the expected value of $X, E(X)$ and the variance $V(X)$.
$f(x)= \begin{cases}\frac{x^{2}}{3}, & -1<x<2, \\ 0, & \text { elsewhere }\end{cases}$
$E(X)=\int_{-\infty}^{\infty} x f(x) d x$

Mean and Variance (3/3)

Example1 - Answer (1/3)

Find the expected value of $X, E(X)$ and the variance $V(X)$.

Mean and Variance (3/3)

Example1 - Answer (1/3)

Find the expected value of $X, E(X)$ and the variance $V(X)$.
$f(x)= \begin{cases}\frac{x^{2}}{3}, & -1<x<2, \\ 0, & \text { elsewhere } .\end{cases}$
$E(X)=\int_{-1}^{2} \frac{x^{3}}{3} d x=\left.\frac{x^{4}}{12}\right|_{-1} ^{2}=\frac{(2)^{4}}{12}-\frac{(-1)^{4}}{12}=\frac{15}{12}$

Mean and Variance (3/3)

Example1 - Answer (2/3)

Find the expected value of $X, E(X)$ and the variance $V(X)$.
$f(x)= \begin{cases}\frac{x^{2}}{3}, & -1<x<2, \\ 0, & \text { elsewhere } .\end{cases}$
$E\left(X^{2}\right)=\int_{-1}^{2} \frac{x^{4}}{3} d x=\left.\frac{x^{5}}{15}\right|_{-1} ^{2}=\frac{(2)^{5}}{15}-\frac{(-1)^{5}}{15}=\frac{33}{15}$

Mean and Variance (3/3)

Example1 - Answer (3/3)

Find the expected value of $X, E(X)$ and the variance $V(X)$.
$E(X)=\frac{15}{12}$
$E\left(X^{2}\right)=\frac{33}{15}$
$V(X)=E\left(X^{2}\right)-(E(X))^{2}=\frac{33}{15}-\left(\frac{15}{12}\right)^{2}=0.6375$

Mean and Variance (3/3)

Example1 - Answer (3/3)

Find the expected value of $X, E(X)$ and the variance $V(X)$.
$E(X)=\frac{15}{12}$
$E\left(X^{2}\right)=\frac{33}{15}$

Standard Deviation (σ)
$=\sqrt{0.6375}=0.798$
$V(X)=E\left(X^{2}\right)-(E(X))^{2}=\frac{33}{15}-\left(\frac{15}{12}\right)^{2}=0.6375$

Joint Probability Distributions

Definition:

If X and Y are two random variables, the probability distribution that defines their simultaneous behavior is called a joint probability distribution.

Joint Prob. Mass Fun. (1/11)

Joint Probability Mass Function:

If X and Y are two discrete random variables, the joint probability mass function is denoted as $f_{X Y}(x, y)$, satisfies

1) $f_{X Y}(x, y) \geq 0$
2) $\sum_{X} \sum_{Y} f_{X Y}(x, y)=1$
3) $f_{X Y}(x, y)=P(X=x, Y=y)$

Joint Prob. Mass Fun. (2/11)

Example1:

A coin is tossed two times. Calculate the joint probability mass function of the discrete random variables X and Y, where X denote the number of heads appear and Y denote the number of tails appear.

Joint Prob. Mass Fun. (2/11)

Example1 - Answer (1/2)
 $S=\{H H, H T, T H, T T\}$
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">X</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">1</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">1</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">number of heads</td>
</tr>
</tbody>
</table>
<table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Y</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">1</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">1</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">number of tails</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| Y | 0 | 1 | 1 | 2 | number of tails |
| :--- | :--- | :--- | :--- | :--- | :--- |</table-markdown></div>

Joint Prob. Mass Fun. (2/11)

Example1 - Answer (2/2)
$S=\{H H, H T, T H, T T\}$
$\begin{array}{llllll}X & 2 & 1 & 1 & 0 & \text { number of heads }\end{array}$
Y
$0 \begin{array}{llll} & 1 & 1 & 2\end{array}$
number of tails

\boldsymbol{y}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	0	0	$1 / 4$
$\mathbf{1}$	0	$2 / 4$	0
$\mathbf{2}$	$1 / 4$	0	0

joint probability mass function $f_{X Y}(x, y)$

Joint Prob. Mass Fun. (3/11)

Example2:

A coin is tossed two times. Calculate the joint probability mass function of the discrete random variables X and Y, where X denote the number of heads appear and Y denote the number of tails appear.

Find:

1) $f_{X Y}(1,2)=P(X=1, Y=2)$
2) $f_{X Y}(2,0)=P(X=2, Y=0)$
3) $P(X=1, Y \leq 2)$
4) $P(Y=2)$

Joint Prob. Mass Fun. (3/11)

Example2 - Answer (1/4)

\boldsymbol{y}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	0	0	$1 / 4$
$\mathbf{1}$	0	$2 / 4$	0
$\mathbf{2}$	$1 / 4$	0	0

Find:

1) $f_{X Y}(1,2)=P(X=1, Y=2)$

Joint Prob. Mass Fun. (3/11)

Example2 - Answer (1/4)

\boldsymbol{y}	\mathbf{x}	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	0	0	$1 / 4$
$\mathbf{1}$	0	$2 / 4$	0
$\mathbf{2}$	$1 / 4$	0	0

Find:

1) $f_{X Y}(1,2)=P(X=1, Y=2)=0$

Joint Prob. Mass Fun. (3/11)

Example2 - Answer (2/4)

\boldsymbol{y}	\boldsymbol{x}	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	0	0	$1 / 4$
$\mathbf{1}$	0	$2 / 4$	0
$\mathbf{2}$	$1 / 4$	0	0

Find:
2) $f_{X Y}(2,0)=P(X=2, Y=0)$

Joint Prob. Mass Fun. (3/11)

Example2 - Answer (2/4)

\boldsymbol{y}	\boldsymbol{x}	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	0	0	$\mathbf{2}$
$\mathbf{1}$	0	$2 / 4$	0
$\mathbf{2}$	$1 / 4$	0	0

Find:
2) $f_{X Y}(2,0)=P(X=2, Y=0)=1 / 4$

Joint Prob. Mass Fun. (3/11)

Example2 - Answer (3/4)

\boldsymbol{y}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	0	0	$1 / 4$
$\mathbf{1}$	0	$2 / 4$	0
$\mathbf{2}$	$1 / 4$	0	0

Find:

3) $P(X=1, Y \leq 2)$

Joint Prob. Mass Fun. (3/11)

Example2 - Answer (3/4)

Find:

\boldsymbol{y}	\boldsymbol{x}	$\mathbf{0}$	$(\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$		0	0	$1 / 4$
$\mathbf{1}$		0	$2 / 4$	0
$\mathbf{2}$		$1 / 4$	0	0

3) $P(X=1, Y \leq 2)=0+\frac{2}{4}+0=\frac{2}{4}$

Joint Prob. Mass Fun. (3/11)

Example2 - Answer (4/4)

\boldsymbol{y}	\boldsymbol{x}	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	0	0	$1 / 4$
$\mathbf{1}$	0	$2 / 4$	0
$\mathbf{2}$	$1 / 4$	0	0

Find:

4) $P(Y=2)$

Joint Prob. Mass Fun. (3/11)

Example2 - Answer (4/4)

\boldsymbol{y}	\boldsymbol{x}	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	0	0	$\mathbf{2}$
$\mathbf{1}$	0	$2 / 4$	0
$\mathbf{2}$	$1 / 4$	0	0

Find:

4) $P(Y=2)=\frac{1}{4}+0+0=\frac{1}{4}$

Joint Prob. Mass Fun. (4/11)

Marginal Probability Distributions

The marginal distributions of the random variable X alone is:
$f_{X}(x)=\sum_{y} f_{X Y}(x, y)$
The marginal distributions of the random variable Y alone is:
$f_{Y}(y)=\sum_{x} f_{X Y}(x, y)$

Joint Prob. Mass Fun. (5/11)

Example3:

A coin is tossed two times. Calculate the joint probability mass function of the discrete random variables X and Y, where X denote the number of heads appear and Y denote the number of tails appear.

Find:

1) $f_{X}(x)$
2) $f_{Y}(y)$

Joint Prob. Mass Fun. (5/11)

Example3 - Answer (1/4)

\boldsymbol{y}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	0	0	$1 / 4$
$\mathbf{1}$	0	$2 / 4$	0
$\mathbf{2}$	$1 / 4$	0	0

Find:

1) $f_{X}(x)$

Joint Prob. Mass Fun. (5/11)

Example3 - Answer (1/4)

Find:

$y \bigcirc x$	0	1	2
0			1/4
1	0	2/4	0
2	1/4	(0)	(0)
$f_{X}(x)$	1/4	2/4	1/4

1) $f_{X}(x)$

Joint Prob. Mass Fun. (5/11)

Example3 - Answer (2/4)

x	0	1	2
$f_{X}(x)$	$1 / 4$	$2 / 4$	$1 / 4$

Find:

1) $f_{X}(x)$

Joint Prob. Mass Fun. (5/11)

Example3 - Answer (3/4)

\boldsymbol{y}	$\boldsymbol{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	0	0	$1 / 4$
$\mathbf{1}$	0	$2 / 4$	0
$\mathbf{2}$	$1 / 4$	0	0

Find:

2) $f_{Y}(y)$

Joint Prob. Mass Fun. (5/11)

Example3 - Answer (3/4)

\boldsymbol{y}	\boldsymbol{x}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	0	0	$1 / 4$	$\mathbf{1} / \mathbf{4}(\boldsymbol{y})$
$\mathbf{1}$	0	$2 / 4$	0	$\mathbf{2 / 4}$
$\mathbf{2}$	$1 / 4$	0	0	$\mathbf{1} / \mathbf{4}$

Find:

2) $f_{Y}(y)$

Joint Prob. Mass Fun. (5/11)

Example3 - Answer (4/4)

y	0	1	2
$f_{Y}(y)$	$1 / 4$	$2 / 4$	$1 / 4$

Find:

2) $f_{Y}(y)$

Video Lectures

All Lectures: hitps://www.youtube.com/playlist?list=PLx|vc-MEDsGgWgSgkmaxESwIvDkIDI r-

Lecture \#5: $\frac{\text { https://www.youtube.com/watch?v=8X8D2DNdSK48list=PLxlvc-- }}{\text { MEDsGgWISgkmaxESwIvdkID| r-Cindex=E }}$ From 00:36:40
https://www.youtube.com/watch?v=crwvc-eW8t880list=PLxlvcMEDsBgWWISgkmaxE5wIvDk|DI r-Gindex=7

Thank You

Dr. Ahmed Hagag
ahagag@fci.bu.edu.eg

