

Probability and Statistics

Lecture 05

Dr. Ahmed Hagag

Faculty of Computers and Artificial Intelligence Benha University

Spring 2023

Announcement

Quiz (1) In Lecture 6 22/3/2023

Covers: Lec 1, 2, 3, and 4

- Discrete Random Variables.
- Probability Mass Functions.
- Cumulative Distribution Functions.
- Discrete R.V. (Mean and Variance).
- Continuous Random Variables.
- Probability Density Functions.
- Continuous R.V. (Mean and Variance).
- Joint Probability Distributions.

Continuous Random Variable:

If the range space R_X of the random variable X is an interval or a collection of intervals, X is called a *continuous* random variable.

A continuous random variable has a probability of 0 of assuming *exactly* any of its values. Consequently, its probability distribution cannot be given in tabular form.

Example:

If we talk about the probability of selecting a person who is at least 163 centimeters but not more than 165 centimeters tall. Now we are dealing with an interval rather than a point value of our random variable.

Continuous R. V. (3/3)

If *X* is a **continuous random variable**, for any x_1 and x_2 ,

$$P(x_1 \le X \le x_2) = P(x_1 < X \le x_2) = P(x_1 \le X < x_2) = P(x_1 < X < x_2)$$

Probability Density Function

For a continuous random variable *X*, a **probability density function** is a function such that

(1)
$$f(x) \ge 0$$

(2) $\int_{-\infty}^{\infty} f(x) dx = 1$
(3) $P(a \le X \le b) = \int_{a}^{b} f(x) dx = \text{ area under } f(x) \text{ from } a \text{ to } b$
for any a and b

Definite Integral:

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a)$$

$$\int_1^3 x^2 \, dx$$

 $\int_{1}^{3} x^{2} dx = \left[\frac{x^{3}}{3}\right]_{1}^{3} = \left[\frac{3^{3}}{3}\right] - \left[\frac{1^{3}}{3}\right] = \left[9 - \left(\frac{1}{3}\right)\right] = \frac{26}{3}$

Example1:

Suppose that
$$f(x) = e^{-x}$$
 for $x > 0$

Check the probability density function, then determine the following probabilities:

1.
$$P(X < 1)$$

2. $P(1 \le X < 2.5)$
3. $P(X = 3)$
4. $P(X \ge 3)$

Example1 – Answer (1/5)

Check the probability density function:

$$\int_{0}^{\infty} e^{-x} dx$$

$$\int_{0}^{\infty} e^{-x} dx = -e^{-x} \Big|_{0}^{\infty} = (-e^{-\infty}) - (-e^{0}) = 0 + 1 = 1$$

Example1 – Answer (2/5) 1) P(X < 1)

$$P(X < 1) = \int_{0}^{1} e^{-x} dx = -e^{-x} \begin{vmatrix} 1 \\ 0 \end{vmatrix} = (-e^{-1}) - (-e^{0})$$

= -0.367879 + 1 = 0.632121

Example1 – Answer (3/5) 2) $P(1 \le X < 2.5)$

$$P(1 \le X < 2.5) = \int_{1}^{2.5} e^{-x} dx = -e^{-x} \begin{vmatrix} 2.5 \\ 1 \end{vmatrix}$$

$$= (-e^{-2.5}) - (-e^{-1}) = -0.082085 + 0.367879$$

= 0.285794

Example1 – Answer (4/5) 3) P(X = 3)

 $\boldsymbol{P}(\boldsymbol{X}=3)=\boldsymbol{0}$

Example1 – Answer (5/5) 4) $P(X \ge 3)$

$$P(X \ge 3) = \int_{3}^{\infty} e^{-x} dx = -e^{-x} \Big|_{3}^{\infty} = (-e^{-\infty}) - (-e^{-3})$$

= 0 + 0.049787 = 0.049787

Example2:

Suppose that the error in the reaction temperature, in °C (Celsius), for a controlled laboratory experiment is a continuous random variable X having the probability density function

$$f(x) = \begin{cases} \frac{x^2}{3}, & -1 < x < 2, \\ 0, & \text{elsewhere.} \end{cases}$$

(a) Verify that f(x) is a density function.
(b) Find P(0 < X ≤ 1).

2

Prob. Density Functions (6/6)

Example2 – Answer (1/2)

Check the probability density function:

$$\int_{-1}^{2} \frac{x^{2}}{3} dx$$
$$\int_{-1}^{2} \frac{x^{2}}{3} dx = \frac{x^{3}}{9} \Big|_{-1}^{2} = \left(\frac{(2)^{3}}{9}\right) - \left(\frac{(-1)^{3}}{9}\right) = \frac{8}{9} + \frac{1}{9} = \mathbf{1}$$

Example2 – Answer (2/2) 2) $P(0 < X \le 1)$

$$P(\mathbf{0} < \mathbf{X} \le \mathbf{1}) = \int_{0}^{1} \frac{x^{2}}{3} \, d\mathbf{x} = \frac{x^{3}}{9} \Big|_{0}^{1}$$

$$= \left(\frac{(1)^3}{9}\right) - \left(\frac{(0)^3}{9}\right) = \frac{1}{9} + \frac{0}{9} = \frac{1}{9}$$

© Ahmed Hagag

Cumulative Distribution Function

The cumulative distribution function of a continuous random variable X is

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(u) du$$

for $-\infty < x < \infty$.

Probability Density Function from the Cumulative Distribution Function Given F(x),

$$f(x) = \frac{dF(x)}{dx}$$

as long as the derivative exists.

Cumulative Distribution Function

The cumulative distribution function of a continuous random variable X is

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(u) du$$

for $-\infty < x < \infty$.

$$P(a < X < b) = F(b) - F(a)$$
 and $f(x) = \frac{dF(x)}{dx}$,
if the derivative exists.

Example1:

Find the cumulative distribution function F(x) and use it to evaluate $P(0 < X \le 1)$.

$$f(x) = \begin{cases} \frac{x^2}{3}, & -1 < x < 2, \\ 0, & \text{elsewhere.} \end{cases}$$

Example1 – Answer (1/3)

$$F(x) = \int_{-\infty}^{x} \frac{u^2}{3} \, du$$

$$\frac{x^2}{3}, \quad -1 < x < 2,$$

Example1 – Answer (1/3)

$$\frac{x^2}{3}, \quad -1 < x < 2,$$

Example1 – Answer (2/3)

$$F(x) = \int_{-\infty}^{x} \frac{u^2}{3} \, du = \int_{-1}^{x} \frac{u^2}{3} \, du = \frac{u^3}{9} \Big|_{-1}^{x} = \left(\frac{(x)^3}{9}\right) - \left(\frac{(-1)^3}{9}\right)$$

$$=\frac{x^3}{9} + \frac{1}{9} = \frac{x^3 + 1}{9}$$

Example1 – Answer (2/3)

Example1 – Answer (2/3)

Example1 – Answer (3/3)

Find the cumulative distribution function F(x) and use it to evaluate $P(0 < X \le 1)$.

$$F(x) = \frac{x^3 + 1}{9}$$

$$P(0 < X \le 1) = F(1) - F(0) = \frac{2}{9} - \frac{1}{9} = \frac{1}{9}$$

Mean and Variance

Suppose that X is a continuous random variable with probability density function f(x). mean or expected value of X, denoted as μ or E(X), is

$$\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

The variance of *X*, denoted as V(X) or σ^2 , is

$$\sigma^2 = V(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2$$

The standard deviation of X is $\sigma = \sqrt{\sigma^2}$.

Example1:

$$f(x) = \begin{cases} \frac{x^2}{3}, & -1 < x < 2, \\ 0, & \text{elsewhere.} \end{cases}$$

Example1 – Answer (1/3)

$$f(x) = \begin{cases} \frac{x^2}{3}, & -1 < x < 2, \\ 0, & \text{elsewhere.} \end{cases}$$

$$E(X) = \int_{-\infty}^{\infty} xf(x) \, dx$$

Example1 – Answer (1/3)

Example1 – Answer (1/3)

$$f(x) = \begin{cases} \frac{x^2}{3}, & -1 < x < 2, \\ 0, & \text{elsewhere.} \end{cases}$$

$$E(X) = \int_{-1}^{2} \frac{x^{3}}{3} dx = \frac{x^{4}}{12} \Big|_{-1}^{2} = \frac{(2)^{4}}{12} - \frac{(-1)^{4}}{12} = \frac{15}{12}$$

Example1 – Answer (2/3)

$$f(x) = \begin{cases} \frac{x^2}{3}, & -1 < x < 2, \\ 0, & \text{elsewhere.} \end{cases}$$

$$E(X^{2}) = \int_{-1}^{2} \frac{x^{4}}{3} dx = \frac{x^{5}}{15} \Big|_{-1}^{2} = \frac{(2)^{5}}{15} - \frac{(-1)^{5}}{15} = \frac{33}{15}$$

Example1 – Answer (3/3)

$$E(X) = \frac{15}{12}$$
$$E(X^2) = \frac{33}{15}$$

$$V(X) = E(X^2) - \left(E(X)\right)^2 = \frac{33}{15} - \left(\frac{15}{12}\right)^2 = 0.6375$$

Example1 – Answer (3/3)

$$E(X) = \frac{15}{12}$$

Standard Deviation (σ)
$$= \sqrt{0.6375} = 0.798$$

$$V(X) = E(X^2) - \left(E(X)\right)^2 = \frac{33}{15} - \left(\frac{15}{12}\right)^2 = 0.6375$$

Joint Probability Distributions

Definition:

If X and Y are two random variables, the probability distribution that defines their simultaneous behavior is called a joint probability distribution.

Joint Probability Mass Function:

If X and Y are two discrete random variables, the joint probability mass function is denoted as $f_{XY}(x, y)$, satisfies

1)
$$f_{XY}(x, y) \ge 0$$

2) $\sum_{X} \sum_{Y} f_{XY}(x, y) = 1$
3) $f_{XY}(x, y) = P(X = x, Y = y)$

Example1:

A coin is tossed two times. Calculate the joint probability mass function of the discrete random variables *X* and *Y*, where *X* denote the number of heads appear and *Y* denote the number of tails appear.

Example1 – Answer (1/2)

$$S = \{HH, HT, TH, TT\}$$
$$X \quad 2 \quad 1 \quad 1 \quad 0$$

number of heads

number of tails

Example1 – Answer (2/2)

$$S = \{HH, HT, TH, TT\}$$
$$X \qquad 2 \qquad 1 \qquad 1 \qquad 0$$
$$X \qquad 2 \qquad 1 \qquad 1 \qquad 0$$

number of heads

Y 0 1 1 2

number of tails

y x	0	1	2
0	0	0	1/4
1	0	2/4	0
2	1/4	0	0

joint probability mass function $f_{XY}(x, y)$

Example2:

A coin is tossed two times. Calculate the joint probability mass function of the discrete random variables *X* and *Y*, where *X* denote the number of heads appear and *Y* denote the number of tails appear.

Find:

1)
$$f_{XY}(1,2) = P(X = 1, Y = 2)$$

2) $f_{XY}(2,0) = P(X = 2, Y = 0)$
3) $P(X = 1, Y \le 2)$
4) $P(Y = 2)$

Example2 – Answer (1/4)

y x	0	1	2
0	0	0	1/4
1	0	2/4	0
2	1/4	0	0

Find:

1) $f_{XY}(1,2) = P(X = 1, Y = 2)$

Example2 – Answer (1/4)

y x	0	1	2
0	0	0	1/4
1	0	2/4	0
2	1/4		0

Find:

1) $f_{XY}(1,2) = P(X = 1, Y = 2) = 0$

Example2 – Answer (2/4)

y x	0	1	2
0	0	0	1/4
1	0	2/4	0
2	1/4	0	0

Find:

2) $f_{XY}(2,0) = P(X = 2, Y = 0)$

Example2 – Answer (2/4)

y x	0	1	2
0	0	0	(1/4)
1	0	2/4	0
2	1/4	0	0

Find:

2) $f_{XY}(2,0) = P(X = 2, Y = 0) = 1/4$

Example2 – Answer (3/4)

y x	0	1	2
0	0	0	1/4
1	0	2/4	0
2	1/4	0	0

Find:

3) $P(X = 1, Y \le 2)$

Example2 – Answer (3/4)

Find:

3)
$$P(X = 1, Y \le 2) = 0 + \frac{2}{4} + 0 = \frac{2}{4}$$

Example2 – Answer (4/4)

y	0	1	2
0	0	0	1/4
1	0	2/4	0
2	1/4	0	0

<u>Find:</u> 4) P(Y = 2)

Example2 – Answer (4/4)

y x	0	1	2
0	0	0	1/4
1	0	2/4	0
(2)	1/4	0	0

Find:

4)
$$P(Y = 2) = \frac{1}{4} + 0 + 0 = \frac{1}{4}$$

Marginal Probability Distributions

The marginal distributions of the random variable *X* alone is:

$$f_X(x) = \sum_{y} f_{XY}(x, y)$$

The marginal distributions of the random variable *Y* alone is:

$$f_Y(y) = \sum_x f_{XY}(x, y)$$

Example3:

A coin is tossed two times. Calculate the joint probability mass function of the discrete random variables *X* and *Y*, where *X* denote the number of heads appear and *Y* denote the number of tails appear.

Find:

1) $f_X(x)$ 2) $f_Y(y)$

Example3 – Answer (1/4)

y x	0	1	2
0	0	0	1/4
1	0	2/4	0
2	1/4	0	0

Find: 1) $f_X(x)$

Example3 – Answer (1/4)

y x	0	1	2
0	0	0	1/4
1	0	2/4	0
2	1/4	0	0
$f_X(x)$	1/4	2/4	1/4

Find: 1) $f_X(x)$

Example3 – Answer (2/4)

x	0	1	2
$f_X(x)$	1/4	2/4	1/4

Find: 1) $f_X(x)$

© Ahmed Hagag

Example3 – Answer (3/4)

y x	0	1	2
0	0	0	1/4
1	0	2/4	0
2	1/4	0	0

Find: 2) $f_Y(y)$

Example3 – Answer (3/4)

y x	0	1	2	$f_{Y}(y)$
0	0	0	1/4	1/4
1	0	2/4	0	2/4
2	1/4	0	0	1/4

Find: 2) $f_Y(y)$

Example3 – Answer (4/4)

у	0	1	2
$f_{Y}(y)$	1/4	2/4	1/4

Find: 2) $f_Y(y)$

© Ahmed Hagag

Video Lectures

All Lectures: https://www.youtube.com/playlist?list=PLxlvc-MGOs6gW9SgkmoxE5w9vQkID1_r-

Lecture #5:https://www.youtube.com/watch?v=8X8D20NdSK4&list=PLxlvc-MGDs6gW9SgkmoxE5w9vQkID1_r-&index=6From 00:36:40

https://www.youtube.com/watch?v=crwvc-eW8t8&list=PLxlvc-MGDs6gW9SgkmoxE5w9vQkID1_r-&index=7

Thank You

Dr. Ahmed Hagag ahagag@fci.bu.edu.eg